Fourier regularization for a backward heat equation ✩
نویسندگان
چکیده
In this paper a simple and convenient new regularization method for solving backward heat equation— Fourier regularization method is given. Meanwhile, some quite sharp error estimates between the approximate solution and exact solution are provided. A numerical example also shows that the method works effectively. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملA Nonhomogeneous Backward Heat Problem: Regularization and Error Estimates
We consider the problem of finding the initial temperature, from the final temperature, in the nonhomogeneous heat equation ut − uxx = f(x, t), (x, t) ∈ (0, π)× (0, T ), u(0, t) = u(π, t) = 0, (x, t) ∈ (0, π)× (0, T ). This problem is known as the backward heat problem and is severely ill-posed. Our goal is to present a simple and convenient regularization method, and sharp error estimates for ...
متن کاملThe Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems
The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems Chih-Wen Chang1, Chein-Shan Liu2 and Jiang-Ren Chang1 Summary By using a quasi-boundary regularization we can formulate a two-point boundary value problem of the backward heat conduction equation. The ill-posed problem is analyzed by using the semi-discretization numerical schemes. Then, the res...
متن کاملDetermination Temperature of a Heat Equation from the Final Value Data
We introduce the truncation method for solving a backward heat conduction problem. For this method, we give the stability analysis with new error estimates. Meanwhile, we investigate the roles of regularization parameters in these two methods. These estimates prove that our method is effective.
متن کامل